Ecosystem Services of Restored Freshwater Wetlands of the Agricultural Midwest: Measurement & Valuation

> C. Craft, A. Hopple, J. Marton, B. Richards and S. Fennessy²

> > Indiana University, ²Kenyon College

Wetland Services

- Nutrient (N,P) sinks and transformers
- Carbon sequestration
- Biodiversity & habitat
- Flood abatement

Wetland Loss

- More than 90% of depressional, floodplain and riparian wetlands.
- Increased nutrient loading, freshwater and coastal eutrophication and hypoxia.

Nutrient enriched stream

Coastal eutrophication

Hypoxia & fish kills

USDA Farm Bill Wetland and Riparian Restoration

 USDA Farm Bill- Wetland Reserve Program (WRP – water quality & habitat) and Conservation Reserve Program (CRP – erosion control).

• Over 100,000 ha of WRP and CRP restoration in the Glaciated Interior Plain (GIP) since 2000.

Approximately 0.2% of estimated loss

Objectives

- 1. Do restored wetlands (and riparian buffers) provide ecosystem services (water quality improvement, C sequestration, biodiversity, greenhouse gas emissions) comparable to natural counterparts?
- II. What are the economic benefits (\$\$\$) of restoring these services? (C sequestration, N, P accumulation)

Wetland Restoration...

...means plugging ditches

10 year-old restored wetland

Riparian Restoration...

...means planting trees

4 year-old restored riparian buffer

Forested Riparian Buffer

Study Sites

Water Quality (Denitrification)

Water Quality (P Sorption)

Wetlands

Measurement of Carbon Sequestration

 Fallout from nuclear weapons testing

• ¹³⁷Cs marker layer

 Provides soil accretion rate, C sequestration, N,P accumulation

Soil Accretion in Natural Systems

Depressional Wetland

Floodplain Wetland

Riparian Buffer

Carbon Sequestration and N, P Accumulation (Natural Systems)

Plant Biodiversity (Wetlands)

Species Richness and Floristic Quality

Greenhouse Gas Emissions (Wetlands)

Anaerobic Incubations & Static Flux Chamber Measurements

Chamber- CH₄

Questions

- 1. Do restored wetlands (and riparian buffers) provide ecosystem services (water quality improvement, C sequestration, biodiversity, greenhouse gas emissions) comparable to natural counterparts?
- II. What are the economic benefits (\$\$\$) of restoring these services? (C sequestration, N, P accumulation)

Carbon and Nutrient (N, P) Trading Credits

Carbon1Nitrogen2Phosphorus3(\$ t C)(\$ kg N)(\$ kg P)

Credit 0.18 - 33 21 - 97 313

¹ Chicago Climate Exchange (CCX) - European Union (EU)

² Ribaudo et al. 2005

³NC Dept. of Environment and Natural Resources

\$ Value of C Sequestration & N,P Accumulation

(GIP – Corn Belt)

- *Ha Restored*¹ 100,000
- Carbon (\$/yr) 900 -163,000
- Nitrogen (\$/yr) 83 383 x 10
- Phosphorus (\$/yr) 444 x '
- 444 x 10⁶

¹ Since 2000.

Sequestration/accumulation calculated using the mean value of wetlands and riparian buffers.

Conclusions

- Restored wetlands contribute less to WQ improvement than natural wetlands. Restored riparian buffers are comparable to natural buffers.
- Plant biodiversity and greenhouse gas emissions are comparable in restored and natural wetlands.
 Emissions are low.
- Most economic valuation is linked to WQ improvement, not much to C sequestration.

Protecting nature. Preserving life.[™]

